

$J\left(\omega^{n}{ }^{n}\right.$ ن
Bargharshad.ir
negareh.ac ir
(a) riaziat_konkar

9 رَّ

>

$$
\frac{\partial \mu}{\partial y}=(\beta+r) x^{\alpha+r} y^{\beta+r}
$$

bargharshad is Ehsan Roshunshamal

$$
\frac{\partial N}{\partial x}=(\alpha+1) x^{\alpha} y^{\beta}+(\alpha+1) x^{\alpha} y^{\beta+r}
$$

(a)riaziat_Kankar

$$
\begin{aligned}
& \Rightarrow \quad \beta=-r, \alpha=-1 \\
& \Rightarrow \quad \mu k=x^{-1} y^{-r}
\end{aligned}
$$

1 is Mr

$$
\begin{aligned}
& \left(x \operatorname{Sec}^{r} \frac{y}{x}\right) d y=\left(y \sec \frac{r}{x}-x \tan \frac{y}{x}\right) d x \\
& \left\{\begin{array}{l}
y=x u \\
y^{\prime}=u+x u^{\prime}
\end{array}\right. \\
& \Rightarrow y^{\prime}=x u^{\prime}+\mu=\mu-\frac{\tan u}{\sec ^{r} u} \\
& \frac{x d u}{d x}=-\frac{\tan u}{\sec ^{r} u} \rightarrow \frac{d x}{x}=-\frac{\sec ^{r} u}{\tan u} d u \\
& \text { bargharshad ir } \\
& \left\{\begin{array}{l}
z=\tan u \quad \in \text { hsan Rosharshamal } \\
d z=\left(1+\tan ^{r} u\right) d u=\frac{1}{\cos ^{r} u} d u=\sec ^{r} u d u
\end{array}\right. \\
& \Rightarrow \frac{d x}{x}=-\frac{d z}{z}=\int \ln x+\ln k=-\ln z \\
& \Rightarrow k x=1 \Rightarrow x z=\frac{1}{1}=c
\end{aligned}
$$

$$
x(\tan u)=C \rightarrow \frac{k}{x \tan \frac{y}{x}=c}
$$

es es HMC

$21, \frac{1,0,0}{21,6 \% \%}$
lagrange: $y=y_{1} \overrightarrow{\left(-u_{1}\right)}+y_{r} \overrightarrow{u_{r}}$

$$
-a_{1}=-\int \frac{y_{p} \cdot \frac{R(x)}{a(x)}}{w(x)} d x
$$

$$
\left\{\begin{array}{l}
R(x)=x^{r} \ln x \\
\ldots r
\end{array}\right.
$$

$$
\begin{aligned}
& u_{r}=+\int \frac{y_{1} \cdot \frac{R(x)}{a(x)}}{w(x)} d x \quad \left\lvert\, \begin{array}{ll}
a(x)=x \\
w(x)=\left|\begin{array}{ll}
y_{1} & y_{r} \\
y_{1}^{\prime} & y_{r}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
x^{r} & x^{r} \ln x \\
r x & \left.r_{x}\right|_{\ln x}+x
\end{array}\right|=x^{r}
\end{array}\right.
\end{aligned}
$$

bargharshadir chsan R, Shanshamul

$$
\begin{aligned}
& \Rightarrow-u_{1}=-\int \frac{x^{r} \ln x \cdot \ln x}{x^{r}} d x=-\int \frac{(\ln x)^{r}}{x} d x \\
& =-\frac{1}{r^{\mu}}(\ln x)^{r} \\
& u_{r}=+\int \frac{x^{r} \cdot \ln x}{x^{r}} d x=\frac{1}{r}(\ln x)^{r}
\end{aligned}
$$

@riaziart_kankar

$$
\begin{aligned}
& \rightarrow \frac{d}{d x}\left(\frac{-1}{r}(\ln x)^{r}\right)=-\frac{1}{x}(\ln x)^{r} \\
& \rightarrow \frac{d}{d x}\left(\frac{1}{r}(\ln x)^{r}\right)=\frac{1}{x}(\ln x)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{Con}(\mathrm{HY})
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \Gamma,>\omega_{\rho}{ }^{n} \\
& \lambda^{r}-1=0 \rightarrow\left(\lambda^{r}-1\right)\left(\lambda^{r}+1\right)=0 \\
& \Rightarrow\left\{\begin{array}{l}
\lambda_{1}=1 \longrightarrow y_{1}=e^{x} \\
\lambda_{r}=-1 \longrightarrow y_{r}=e^{-x} \\
\lambda_{r}=i \longrightarrow y_{r}, \varepsilon=\cos x, \sin x \\
\lambda_{\varepsilon}=-i \longrightarrow
\end{array}\right.
\end{aligned}
$$

bargharshad.ir Ehsun Rasharshamal

$$
\Rightarrow y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos n+e_{\varepsilon} \sin n
$$

 σC H7

$$
f(t)=\left[r(t-1)^{\nu}+\alpha(t-1)-1\right] e^{\frac{1}{t}}
$$

bargharshad ir thsan Roshanshomal

$$
\begin{aligned}
& =\left[r t^{r}-r t+r+\alpha t-\alpha-1\right]\left[1+\frac{1}{t}+\frac{1}{r+t^{r}}+\frac{1}{r^{r}-t^{r r+}}\right] \\
& \Rightarrow \frac{1}{t} \sigma_{r}=\frac{r}{4}+\frac{(\alpha-r)}{r}+\frac{-\alpha+1}{1}=\frac{1}{7} \\
& \Rightarrow \alpha=-\frac{\infty}{r}
\end{aligned}
$$

D

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z-i}{z+i}\right)<1 \Rightarrow \frac{x+i(y-1)}{x+i(y+1)}<1 \\
& \Rightarrow \operatorname{Re}(\downarrow)=\frac{x^{r}+\left(y^{r}-1\right)}{x^{r}+(y+1)^{r}}<1 \\
& \Rightarrow x^{r}+y^{r}-1<x^{r}+y^{r}+r y+1 \rightarrow y>-1
\end{aligned}
$$

(a)riaziat_Konkar

Q4. 8

$$
\begin{aligned}
& \text { (1) } \operatorname{Im}\left(\frac{z-i}{z+i}\right)>a \Rightarrow \frac{-r x}{x^{r}+(y+1)^{r}}>e_{1} \\
& \Rightarrow x^{r}+(y+1)^{r}<\frac{-r x}{a} \\
& (x+1)^{r}+(y+1)^{r}<1 \quad \Delta c^{00^{r}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
a a^{\prime} \\
\frac{-1}{a} \varepsilon_{0}^{0} \sim\left(\operatorname{cla}^{\prime}\right) \text { dols }
\end{array} \\
& \left(\frac{-1}{a},-1\right) \text {; , }
\end{aligned}
$$

$\therefore \mathrm{lm}$

(a)riaziat_Kankar

$$
\begin{aligned}
& \text { Ns z+ } \frac{1}{z}=r \cos \theta+i r \sin \theta+\frac{1}{r} \cos \theta-\frac{i}{r} \sin \theta \\
& =r \cos \theta+\frac{1}{r} \cos \theta+i\left(r \sin \theta-\frac{1}{r} \sin \theta\right)=u+i v \\
&
\end{aligned} \begin{aligned}
& u=r \cos \theta+\frac{1}{r} \cos \theta \rightarrow \frac{u}{\left(r+\frac{1}{r}\right)^{r}}=\cos \theta \\
& v=r \sin \theta-\frac{1}{r} \sin \theta \rightarrow \frac{V}{\left(r-\frac{1}{r}\right)^{r}} \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
|z| & =r=r \quad u^{r} \\
& \left.\Rightarrow \frac{v^{r}}{r}\right)
\end{aligned}+\frac{v^{r}}{\left(\frac{r}{r}\right)^{r}}=1
$$

5) $\frac{\varepsilon u^{r}}{r Q}+\frac{\Sigma v^{r}}{q}=1$

$$
=\frac{u^{r}}{r a}+\frac{v^{r}}{q}=\frac{1}{r}
$$

1) For

$$
a_{n}=\frac{r}{\pi} \int_{0}^{\pi} \sin \alpha x \cos n x d x
$$

$$
\xrightarrow{\downarrow}=\frac{-1}{\pi} \frac{1}{\alpha-n} \cos \left(\alpha_{\pi}-n \pi\right)+\frac{1}{\pi(\alpha-n)}
$$

$$
+\frac{1}{\pi(\alpha+n)}-\frac{1}{-1 \ldots 1} \cos (\alpha \pi+n \pi)
$$

$$
\begin{aligned}
& \frac{\alpha+n+\alpha-n}{\pi(\alpha-n)(\alpha+n)}-\left[\frac{\cos \alpha \pi \cos n \pi+\sin \alpha \pi \sin n \pi}{\pi(\alpha-n)}\right] \\
&= {\left[\frac{\cos \alpha \pi \sigma_{3} n \pi-\sin \alpha \pi \sin n \pi}{\pi(\alpha+n)}\right] } \\
&= \frac{\alpha \alpha}{\pi\left(\alpha^{r}-n^{r}\right)}-\frac{\cos \alpha \pi \cos \pi n}{\pi} \\
&= \frac{\gamma \alpha(1-(-1) \cos \alpha \pi)}{\pi(\alpha-n)(\alpha+n)} \\
&=\frac{\left.\mu \alpha(-1)^{n} \cos \alpha \pi-1\right)}{\pi\left(n^{r}-\alpha \alpha^{r}\right)}
\end{aligned}
$$

bargharshad.ir - Ehsan Roshanshomall

حو 2
$\stackrel{1}{\circ}$

$$
\begin{aligned}
& u(0, y)=1 \\
& b_{n}=\frac{r}{\pi} \int_{0}^{\pi} u(0, y) \sin \frac{n \pi}{\pi} y d y=\frac{r}{\pi} \int_{\frac{\pi}{r}}^{\pi} \sin n y d y \\
& =\left.\frac{-r}{\pi n} \cos n y\right|_{\frac{\pi}{r}} ^{\pi}=\frac{-r}{\pi n}\left(\cos n \pi-\operatorname{con} \frac{n \pi}{r}\right)_{t^{r}}^{t^{0}} \\
& \text { s) } b_{n}=\frac{r}{\pi n}\left(\cos \frac{n_{\pi}}{r}-(-1)^{n}\right) \\
& \longrightarrow b_{1}=\frac{r}{\pi}\left(\cos \frac{\pi}{r}-(-1)^{\prime}\right)=\frac{r}{\pi} \\
& b_{r}=\frac{1}{\pi}\left(\cos \pi-(-1)^{r}\right)=\overline{-r} \bar{\pi} j^{\prime} \operatorname{der}^{r} r_{1} \\
& b_{r}=\frac{r}{r_{\pi}}\left(\cos \frac{r_{\pi}^{a}}{r}-(-1)^{r}\right)=\frac{r}{r_{\pi}} \quad \text {-i el }{ }^{\mu} r^{\mu} \\
& \text { bargharshad.ir Ehsan Roshanshomell } \\
& \theta^{\circ} 2 \% \text { ol gor rij lif }
\end{aligned}
$$

$$
u(x, y)=\frac{r}{\pi}\left(e^{-x} \sin y-e^{-r x} \sin r y+\frac{1}{r} e^{-r x} \sin r y+-\right)
$$

Last modified: $22: 55$

