$$
\begin{aligned}
& =10^{-v} \ln \left(\varepsilon \times \frac{D^{r}}{r^{r} e^{-r / 2}}\right) \rightarrow \frac{D^{r}}{r^{r} e^{-r / 2}}=\frac{\varepsilon^{r}}{r^{r}} \rightarrow D=\varepsilon e^{-\frac{1}{\varepsilon}} \\
& Z_{\text {base }}=\frac{\varepsilon_{00}^{r}}{\varepsilon_{0}}=\varepsilon_{00} \Omega \rightarrow X=10^{-\varepsilon} \times \varepsilon_{00}=0, \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& T=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \\
& y=j w c \\
& y=j \times r \pi \times \omega \cdot \times\left.\frac{r \pi \varepsilon_{0}}{\ln \frac{r^{r} D}{D_{\pi}}} \cdot d x\right|^{r}=j \frac{\varphi_{0} \pi^{r} a \varepsilon_{0}}{\ln r} \times\left. 1\right|_{0} ^{r}
\end{aligned}
$$

ivo

$$
v_{y}^{-(1)}=\frac{1}{-j a, a}\left[\frac{r}{1 x_{0}}-(j \mid \times(1)]: \frac{j}{a, a}(r-j \mid \cdot)=\frac{10-j r}{4, a}\right.
$$

$$
\begin{aligned}
24 & \longrightarrow 100 k w, \cos \varphi=4 \log \rightarrow S_{1}=100+j 10 \times \frac{\wedge}{4} \\
& \longrightarrow 100 k V A, \cos \varphi=14 \log \rightarrow S_{Y}=40+j \wedge 0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{asc}_{r}=1 \lambda \rightarrow Q_{C}=? \quad S_{6}=140+j\left(10+\frac{\varepsilon_{0}}{r}\right) \\
& \rightarrow Q_{r}=14=\times \frac{\Lambda}{10}=1 r \wedge \rightarrow Q_{C}=\left(10+\frac{\varepsilon_{0}}{r}\right)-K \Lambda=\wedge \partial k V A_{r}
\end{aligned}
$$

